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Abstract

The Lyapunov rank of a cone is the number of independent equations
obtainable from an analogue of the complementary slackness condition in
cone programming problems, and more equations are generally thought
to be better. Bounding the Lyapunov rank of a proper cone in Rn from
above is an open problem. Gowda and Tao gave an upper bound of n2 −n
that was later improved by Orlitzky and Gowda to (n − 1)2. We settle
the matter and show that the Lyapunov rank of

(
n2 − n

)
/2+1 belonging

to the Lorentz second-order cone is maximal.

1 Preliminaries
The study of Lyapunov rank was initiated by Rudolf, Noyan, Papp, and Al-
izadeh [9], who called it bilinearity rank. The idea is inspired by the comple-
mentary slackness condition in linear programming over the nonnegative orthant
Rn+. When the entries of x, s are nonnegative, the single complementarity con-
dition 〈x, s〉 = 0 can be split into n equations xisi = 0 for i = 1, 2, . . . , n. If
{e1, e2, . . . , en} denotes the standard basis and if we define Li := eie

T
i , then we

have obtained the new equations 〈Lix, s〉 = xisi = 0 from 〈Ix, s〉 = 0. The
matrices {Li | i = 1, 2, . . . , n} form a basis for a vector space of dimension n
whose elements L all satisfy the same property: if x, s ∈ Rn+ and if 〈x, s〉 = 0,
then 〈Lx, s〉 = 0. This is how we obtain n equations from I = L1 +L2 + · · ·+Ln.

This situation generalizes as follows. Suppose now that K is any closed
convex cone in Rn. The dual cone of K is

K∗ := {y ∈ Rn | 〈x, y〉 ≥ 0 for all x ∈ K}

and in order to solve optimization problems over K, we often seek pairs of x ∈ K
and s ∈ K∗ such that 〈x, s〉 = 0. We call this set

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0}

the complementarity set of the cone K. Gowda [3] calls any matrix L preserving
the complementarity of these pairs Lyapunov-like, after the Lyapunov operators
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in the theory of dynamical systems. The matrices Lyapunov-like on K form a
vector subspace that we denote by

LL (K) :=
{
L ∈ Rn×n ∣∣ (x, s) ∈ C (K) implies 〈Lx, s〉 = 0

}
,

and they are the same “bilinear complementarity relations” that Rudolf et alii
studied in the context of conic optimization [9]. The dimension of this vector
space is the Lyapunov rank [5] of K, and is denoted by

β (K) := dim (LL (K)) .

Clearly, the identity matrix belongs to LL (K) regardless of K. The identity can
therefore be expressed in terms of a basis {Li | i = 1, 2, . . . , β (K)} for LL (K),
whence we obtain the β (K) equations 〈Lix, s〉 = 0 from 〈Ix, s〉 = 0.

Lyapunov rank has been computed for a plethora of proper cones. Of
paramount interest is the Lorentz second-order cone,

Ln+ :=
{

(t, x)T ∈ R× Rn−1
∣∣∣ ‖x‖ ≤ t} ,

whose Lyapunov rank was shown to be
(
n2 − n

)
/2 + 1 by Gowda and Tao [5].

Gowda [3] had uncovered a deep connection, recognizing that the matrices
Lyapunov-like on a cone are the Lie algebra of its automorphism group. If

Aut (K) :=
{
A ∈ Rn×n ∣∣ A−1 exists and A (K) = K

}
and if Lie (G) is the Lie algebra of the Lie group G, then we have

LL (K) = Lie (Aut (K)) ; thus
β (K) = dim (Lie (Aut (K))) .

We adopt this definition of Lyapunov rank. No generality is lost by working in
Rn, since all finite-dimensional real inner-product spaces are isometric, and

Proposition 1 (Orlitzky [7], Proposition 5). If V and W are finite-dimensional
real inner-product spaces, if K is a closed convex cone in V , and if L : V →W
is linear and invertible, then β (K) = β (L (K)).

This lightens the burden upon the reader, since all Lie groups encountered
will be matrix groups equipped with the usual topology. For example, the
topological group of isometries on Rn is the group of orthogonal matrices,

On :=
{
Q ∈ Aut (Rn)

∣∣ QT = Q−1} ,
with the induced metric topology. Compact means closed and bounded, and
the topological interior of X ⊆ Rn will be indicated by int (X). By way
of contrast with the linear dimension, we write mdim (X) for the manifold-
dimension of a manifold X. If S denotes the unit sphere in R3, for example,
then dim (span (S)) = 3 but mdim (S) = 2. Finally, if G is a group of matrices,
we write Gx := {g ∈ G | gx = x} for the stabilizer or isotropy subgroup of G.
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So far we have spoken only of closed convex cones, but one final simplifying
assumption can be made. A proper cone is a closed convex cone K in Rn that
also satisfies K∩−K = {0} and dim (span (K)) = n. Orlitzky [7] gives a formula
for the Lyapunov rank of any closed convex cone in terms of a proper subcone.
We therefore need only consider proper cones.

2 Motivation and background results
We will show that the Lorentz cone possesses the largest Lyapunov rank of any
proper cone in Rn, thereby supplying a tight upper bound on the rank of any
other. Previous upper bounds were attained through “brute force” arguments [5,
8]. The conjecture that the Lorentz cone maximizes Lyapunov rank comes from
two observations. The first is that the Lyapunov ranks of countless cones have
been catalogued, and the rank of the Lorentz cone is simply so far supreme. The
second is that, among other proper cones, the Lyapunov ranks of the symmetric
cones have proven preternatural [5]. This leads to an informal inkling that
symmetry and Lyapunov rank are intertwined.

Proper cones extend indefinitely in some direction, in the sense that they are
contained in a single half-space. More specifically, every proper cone consists of
nonnegative scalar multiples of a compact convex base that can be explicitly con-
structed. Suppose that K and thus K∗ are proper cones in Rn. Choose a point
e ∈ int (K∗), and define the base B := {x ∈ K | 〈x, e〉 = 1}. Then B is compact
and convex, does not contain the origin, and satisfies K = {αb | α ≥ 0, b ∈ B}.
If we pick some b0 in the relative interior of B and translate to B0 := B − b0,
then it follows that K is the set of all nonnegative multiples of the set b0 +B0,
where b0 ∈ int (K) and B0 is contained in a subspace of dimension n − 1 by
construction. One then thinks of b0 as being a direction in which K extends
indefinitely, with B0 evincing the shape of the cone. The Lorentz cone thusly ex-
tends in the direction of b0 = e1, with B0 the unit ball in Rn−1. It’s a challenge
to conceive a compact convex set more symmetric than the unit ball. Perhaps
this superlative symmetry explains its unparalleled Lyapunov rank?

Instead of studying the space of matrices Lyapunov-like on a given cone, we
will attack the underlying Lie group of automorphisms. The isotropy subgroup
of cone automorphisms that fix b0 can be used to “factor out” the direction b0,
leaving us with only the shape B0 that arises from a cross-section of the cone.
Since the cross-section of the Lorentz cone is maximally symmetric, this process
will show that the automorphism group of any other proper cone is in some
sense inferior to that of the automorphism group of the Lorentz cone. Taking
Lie algebras and tallying dimensions then proves the result.

To formalize all of this, we require a few textbook results, enumerated here
without ceremony.

Proposition 2 (Faraut and Korányi [2], I.1.8). If K is a proper cone in a
Euclidean space, then Aut (int (K))x is compact for any x ∈ int (K).

Theorem 1 (Lee [6], 8.37). If G is a Lie group, then mdim (G) = dim (Lie (G)).

3



Theorem 2 (Lee [6], 20.12). If G is a Lie group and if H is a closed subgroup
of G, then H is an embedded Lie subgroup of G.

Theorem 3 (Lee [6], 21.20). If a Lie group G acts transitively on a set K and
if Gx is closed for some x ∈ K, then mdim (K) = mdim (G)−mdim (Gx).

Theorem 4 (Bröcker and tom Dieck [1], II.1.7). If G is a compact subgroup of
Aut (Rn), then there exists an inner product on Rn under which every element
of G is an isometry.

3 Main results
This first result is not new, only convenient.

Proposition 3. If K is a proper cone in Rn and if x ∈ int (K), then the
isotropy subgroup Aut (K)x of the Lie group Aut (K) is a compact Lie group.

Proof. That Aut (K) is a Lie group can be taken as given, since the Lyapunov
rank is the dimension of its Lie algebra. The compactness of Aut (K)x follows
from Proposition 2 and the elementary fact that Aut (int (K)) = Aut (K). Since
we are working with matrices, compact means closed, and closed subgroups of
Lie groups are themselves Lie groups by Theorem 2.

Every proper cone in Rn is a manifold (with boundary) of dimension n,
being an intersection of closed half-spaces whose interior is nonempty. Thus their
interiors are manifolds (without boundary) of dimension n as well; in particular,
Proposition 3 can be combined with Theorem 3 for a symmetric cone, whose
automorphism group by definition acts transitively on its interior [2].

Corollary 1. If x belongs to the interior of some symmetric cone K in Rn,
then mdim (Aut (K))−mdim (Aut (K)x) = n.

For the purpose of pedagogy, we will recalculate the Lyapunov rank of the
Lorentz cone using Corollary 1. An application of Theorem 1 shows that

dim
(
Lie
(
Aut

(
Ln+
)))

= mdim
(
Aut

(
Ln+
))

= n+ mdim
(
Aut

(
Ln+
)
x

)
for any x ∈ int

(
Ln+
)
, but we need to compute one of the isotropy subgroups

Aut
(
Ln+
)
x

for this to be useful. The following choice of x is most convenient.

Lemma 1. If Ln+ is the Lorentz cone in Rn, then

Aut
(
Ln+
)
e1

=
{[

1 0
0 Q

] ∣∣∣∣ Q ∈ On−1
}

= One1
.

Proof. The first equality is Example 4.2 of Gowda and Sznajder [4]. The second
is well-known [1, 6] and easy to verify.

Theorem 5. The Lyapunov rank of the Lorentz cone in Rn is
(
n2 − n

)
/2 + 1.
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Proof. Example 7.27 of Lee [6] shows that

mdim
(
On−1) = 1

2

[
(n− 1)2 − (n− 1)

]
= 1

2
[
n2 − 3n+ 2

]
.

Combining Corollary 1, Lemma 1, and Theorem 1 thus gives

β
(
Ln+
)

= mdim
(
Aut

(
Ln+
))

= n+ mdim
(
On−1) = n2 − n+ 2

2 .

Corollary 2. If x ∈ int (K) for some proper cone K in Rn and if Aut (K)x is
a subgroup of One1

, then β (K) ≤
(
n2 − n

)
/2 + 1.

Proof. Apply Theorem 3 to any set X ⊇ {x} on which Aut (K) acts transitively.
The Aut (K)-orbit of x itself shows that such a set exists.

Theorem 6. If K is a proper cone in Rn, then β (K) ≤ β
(
Ln+
)

= n2−n
2 + 1.

Proof. We exploit Corollary 2. The cone K is proper, so choose a ξ ∈ int (K). It
follows from Proposition 3 that Aut (K)ξ is compact, and from Theorem 4 that
there is an inner product on Rn under which Aut (K)ξ contains only isometries.
Every inner product on Rn is of the form (x, y) 7→

〈
MTMx, y

〉
= 〈Mx,My〉

for some M ∈ Aut (Rn), so let’s suppose that M does the job here; that
〈MAx,MAy〉 = 〈Mx,My〉 for all x, y ∈ Rn and all A ∈ Aut (K)ξ. There
also exists some Q ∈ On such that Q (Mξ/ ‖Mξ‖) = e1. Since Q is an isometry,
we have 〈QMAx,QMAy〉 = 〈Mx,My〉 for all x, y ∈ Rn and all A ∈ Aut (K)ξ.
Letting x = M−1Q−1w and y = M−1Q−1z, we observe that〈

QMAM−1Q−1w,QMAM−1Q−1z
〉

= 〈w, z〉

for all w, z ∈ Rn and all A ∈ Aut (K)ξ. Thus QM Aut (K)ξM−1Q−1 ⊆ On,
since it consists of isometries on Rn. It also fixes e1, for if A ∈ Aut (K)ξ, then

QMAM−1Q−1e1 = QMAM−1 Mξ

‖Mξ‖
= QMAξ

‖Mξ‖
= QMξ

‖Mξ‖
= e1.

As a result QM Aut (K)ξM−1Q−1 is a subgroup of One1
, namely

QM Aut (K)ξM
−1Q−1 = Aut (QM (K))e1

⊆ One1
.

Apply Corollary 2 to conclude that the Lyapunov rank of the proper cone
QM (K) is at most

(
n2 − n

)
/2 + 1. The result for K itself then follows from

Proposition 1, and the bound is tight by virtue of Theorem 5.
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